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Highlights: 16 

 A high-resolution modeling study was carried out to systematically characterize 17 

wave climate in Salish Sea. 18 

 Spatial resolution of wind forcing plays an important role in the accuracy of wave 19 

hindcast in estuaries with interconnected sub-basins. 20 

 Sea state is dominated by swell in the entrance of Salish Sea and dominated by 21 

wind-sea in the Strait of Georgia and Puget Sound. 22 
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 Sea state shows strong seasonal variations in the Strait of Juan de Fuca and the 23 

Strait of Georgia but little seasonality in Puget Sound. 24 

 25 
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ABSTRACT 28 

Accurate model hindcast of wave climate in complex estuarine systems is 29 

challenging because high-resolution wave models and wind forcing are required. In this 30 

study, a modeling approach using the unstructured-grid Simulating WAves Nearshore 31 

and a wind product from a high-resolution regional Weather Research and Forecasting 32 

hindcast was used to simulate the swell and wind-sea climate in the Salish Sea, a large 33 

estuary with many interconnected waterways on the Pacific Northwest coast of North 34 

America. The model hindcast was validated with observed data at four wave buoys. 35 

Spatial distribution and seasonal variations in wave climate in the Salish Sea were 36 

analyzed. Of the three major basins in the Salish Sea, the Strait of Juan de Fuca has the 37 

largest waves and is dominated by swells propagated from the Pacific Ocean. Significant 38 

wave heights in the Strait of Georgia have spatial and seasonal distribution patterns 39 

similar to those found in the Strait of Juan de Fuca. Waves in Puget Sound are small and 40 

primarily dominated by the wind-sea climate. Strong seasonal variations are observed in 41 

the Strait of Juan de Fuca and Strait of Georgia, but there is little seasonality of wave 42 

climate in Puget Sound. The high-resolution wave hindcast conducted in this study 43 

provides a comprehensive and important data set for better understanding the role of 44 

wave climate in coastal processes and natural hazards assessment in the Salish Sea. 45 

 46 

 47 

 48 

  49 
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1 Introduction 50 

The Salish Sea, which consists of the Strait of Juan de Fuca (SJDF), Strait of 51 

Georgia (SoG), and Puget Sound, is an inland sea on the Pacific coast bordered by the 52 

U.S. state of Washington (WA) and British Columbia (BC), Canada (FIG. 1). The Salish 53 

Sea is the second largest estuary in the U.S. and its coast hosts major U.S. and Canadian 54 

cities and ports such as Olympia, Seattle, Tacoma, Victoria, and Vancouver. The Salish 55 

Sea connects to the Pacific Ocean via the SJDF that separates Washington State and 56 

Vancouver Island and via Johnstone Strait at the northern end of Vancouver Island. The 57 

Pacific Northwest (PNW) coast, including Washington, Oregon, and northern California, 58 

is subject to an energetic wave climate caused by westerly winds at mid-latitudes blowing 59 

over the northern Pacific Ocean, and the WA and BC coasts are in the path of the 60 

dominant tracks for winter extratropical storms (Allan and Komar, 2002; Harr et al., 2000; 61 

Kita et al., 2018; Martin et al., 2001; Mass and Dotson, 2010; Mesquita et al., 2010). 62 

Therefore, the PNW coast is one of the top coastal regions in U.S. identified for wave 63 

energy development (EPRI, 2011). There are concerns about coastal flooding induced by 64 

large waves and storm surge during extreme storm events. Despite the economic and 65 

strategic importance of the Salish Sea, no detailed studies of the wave climate have been 66 

conducted there, either using numerical modeling or field measurements.  67 
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 68 

FIG. 1. The Salish Sea and surrounding regions. Buoys used for data model 69 

comparisons are shown as dots. The red line indicates the wave model open boundary 70 

and color contours show the bathymetry. The Strait of Juan de Fuca and Strait of 71 

Georgia are abbreviated as SJDF and SoG, respectively. 72 

Wave climate in nearshore regions highly depends on remote incoming wave 73 

characteristics and can vary greatly within a region because of the wind forcing and 74 
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complexity of the local geometry, including bathymetry, coastline characteristics, and 75 

presence of sub-basins. Better understanding of the process of wave energy growth and 76 

dissipation in a large estuarine system like the Salish Sea is important, not only for 77 

characterizing the wave energy resource, but also for minimizing the impact of coastal 78 

hazards and restoring coastal ecosystems. Although many wave modeling studies have 79 

been conducted in regional oceans, coastal bays, and estuaries (Albarakati and 80 

Aboobacker, 2018; Beudin et al., 2017; Bolanos-Sanchez et al., 2007; Chen et al., 2003; 81 

Cheng et al., 2015; Dupuis and Anis, 2013; Gorman and Neilson, 1999; Mulligan et al., 82 

2008; Nayak et al., 2013; Rusu et al., 2011b; Semedo et al., 2015; Xu et al., 2005), few 83 

studies have focused on wave transformation and the effect of wind forcing at an 84 

estuarine basin scale (Alari et al., 2008; Bento et al., 2015; Lin et al., 2002; Niroomandi 85 

et al., 2018; Rusu et al., 2011a).  86 

To date, little is known about how wave energy grows and dissipates as swells 87 

from the Pacific Ocean propagate into the Salish Sea. In this study, a high-resolution 88 

wave hindcast was performed using state-of-the-art modeling techniques to assess the 89 

wave climate in the Salish Sea and its sub-basins. Section 2 describes the model 90 

implementation, and the results are presented and discussed in Section 3. Section 3.1 91 

presents data model comparisons with an emphasis on the sensitivity of the wave model 92 

to the wind input. Sections 3.2 and 3.3 describe the respective spatial and seasonal 93 

characteristics of the wave climate in the Salish Sea. A summary and concluding remarks 94 

follow in Section Error! Reference source not found.. 95 
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2 Methods 96 

2.1 Salish Sea Wave Model  97 

In this study, the third-generation phase-averaged wave model, Simulating WAves 98 

Nearshore (SWAN) (SWAN Team, 2017) was used to simulate the wave climate in the 99 

Salish Sea. SWAN is one of the most widely used models and has been implemented 100 

successfully in many nearshore and shallow-water applications (e.g., O'Dea et al., 2018; 101 

Wu et al., 2018). SWAN solves the following action balance equation: 102 

∂N

∂t
+
𝜕𝑐𝑔𝑥𝑁

𝜕𝑥
+
𝜕𝑐𝑔𝑦𝑁

𝜕𝑦
+
𝜕𝑐𝜃𝑁

𝜕𝜃
+
𝜕𝑐𝜎𝑁

𝜕𝜎
=
1

σ
(Sin + Sds + Snl + Sbot + Sbrk) 103 

where the left-hand side represents the total derivative of the wave action (N) in spatial 104 

(x,y), directional (θ), and frequency (σ) space. The velocity of propagation in each 105 

dimension is represented by c. The right-hand side represents the sinks and sources of 106 

energy; Sin represents the wave growth due to wind, using the Janssen (1989, 1991) 107 

method in combination with the linear growth function of Cavaleri and Rizzoli (1981); Sds 108 

represents the dissipation of energy due to whitecapping as described by Komen et al. 109 

(1984); the non-linear quadruplet wave interactions (Snl) are modeled using the discrete 110 

interaction approximation method of Hasselmann et al. (1985); and the bottom friction 111 

(Sbot) and depth-induced wave breaking (Sbrk) are modeled using the Hasselmann et al. 112 

(1973) and Battjes and Janssen (1978) formulations. The default parameters are used 113 

for all the source terms.  114 

Because of the complex geometry of the Salish Sea, especially the presence of 115 

several sub-basins in Puget Sound, the unstructured-grid version of SWAN (UnSWAN) 116 

was used in this study. The unstructured-grid approach allows one to focus resources 117 
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nearshore and in areas of complex geometry, while relaxing the model resolution over 118 

deeper waters. The unstructured-grid modeling approach has been used successfully to 119 

simulate waves in the PNW (Cheng et al., 2015; Robertson et al., 2014; Wu et al., 2018). 120 

The wave model grid for the Salish Sea was built based on the high-resolution 121 

unstructured-grid for the Salish Sea hydrodynamic and transport model (Wang and Yang, 122 

2017; Yang and Khangaonkar, 2010; Yang and Wang, 2015). The model open boundary 123 

is extended 170 km out to the inner shelf from 49°29’9” N in the north to 46°16’40” N in 124 

the south, such that propagation of incoming swells can be properly simulated (García-125 

Medina et al., 2013). The model grid has a total of 120,073 vertices and 217,388 126 

elements. The grid element area varies from 41,400,000 m2 at the offshore boundary to 127 

100 m2 at the shoreline in the Salish Sea, which roughly translates to a 10 km grid 128 

resolution at the offshore boundary and a 10 m grid resolution at the major estuarine 129 

mouths in Puget Sound, such as Skagit River and Snohomish River in Whidbey Basin, 130 

the Skokomish River in Hood Canal, and the Puyallup River in the South Sound. The 131 

model resolution at the entrance to the SJDF is approximately 1 km with a total of 22 grid 132 

points in the across-channel direction. The offshore boundary of the grid extends 133 

approximately 165 km from the entrance to the SJDF. The bathymetry in Puget Sound 134 

was interpolated from the combination of the National Oceanic and Atmospheric 135 

Administration’s (NOAA’s) 1/3 arc-second Digital Elevation Model (DEM) of Puget Sound 136 

(Carignan et al., 2014) and the University of Washington’s combined bathymetry and 137 

topography DEM of Western Washington (Finlayson, 2005). The bathymetry in the outer 138 

coastal region was obtained from NOAA’s ETOPO1 Global Relief Model, which is a 1-139 
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arc-minute global relief model of Earth's surface that integrates land topography and 140 

ocean bathymetry (Amante and Eakins, 2009).  141 

The UnSWAN model was executed in time-dependent mode with a time step of 10 142 

minutes. The wave spectrum was discretized in frequency space using 29 logarithmically 143 

spaced bins from 0.035 to 0.505 Hz, which covers the expected range of waves that reach 144 

the U.S. West Coast from distant sources and is also able to capture local wave 145 

generation. In directional space, 24 equally spaced bins are used, giving a directional 146 

resolution of 15 degrees. Significant wave height (Hs), peak wave period (Tp), mean wave 147 

period based on the first spectral moment (Tm01), mean wave direction (Dm), and peak 148 

wave direction (Dp) are collected at hourly intervals across the entire computational grid.  149 

The effect of current is not considered in the model configuration even though tidal 150 

current is strong in the Salish Sea, because the focus of the study was to evaluate the 151 

wave energy growth and dissipation in the Salish Sea. Similarly, the effect of river 152 

discharge was also not considered in this study. 153 

2.2 Open Boundary Forcing  154 

The wave boundary conditions for the Salish Sea SWAN model were forced by 155 

hourly spectral output from a three-level nested WAVEWATCH III model (WW3), 156 

developed by Yang et al. (2018) as part of a wave resource characterization study on the 157 

U.S. West Coast. WW3 is a third-generation phase-average wave model developed by 158 

NOAA’s National Center for Environmental Prediction (NCEP) (Tolman and 159 

WAVEWATCH III Development Group, 2014). It solves the same spectral wave action 160 

balance equation as SWAN. NOAA NCEP currently conducts a wave forecast four times 161 

a day using multigrid WW3 for the global and regional oceans, including the Arctic Ocean, 162 
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Northwest Atlantic, East Pacific, Alaskan Coast, U.S. West Coast, and Gulf of Mexico 163 

(http://polar.ncep.noaa.gov/waves/implementations.php). WW3 has been widely used 164 

and validated not only at a global scale but also at shelf and coastal bay scales (Anselmi-165 

Molina et al., 2012; Crosby et al., 2017; Crosby et al., 2016; García-Medina et al., 2014; 166 

Sartini et al., 2018; Umesh et al., 2018; Yang et al., 2017; Yang et al., 2018). The three-167 

level nested WW3 includes a 30-arc-minute resolution global domain and two nested 168 

regional domains with 6-arc-minute and 1-arc-minute resolutions. The 1-arc-minute 169 

resolution model covers the entire U.S. West Coast, including the states of Washington, 170 

Oregon, and California, and extends offshore up to the 200 nautical miles Exclusive 171 

Economic Zone. In this study, the three-level nested WW3 model used the same model 172 

configurations as UnSWAN in both the frequency and spectral domains. For more 173 

detailed information about the 1-arc-minute WW3 model configuration and validation for 174 

the U.S. West Coast, the readers are referred to the previous studies (Yang et al., 2017; 175 

Yang et al., 2018). 176 

2.3 Buoy Data for Model Validation 177 

One of the challenges for wave model hindcasting in the Salish Sea is the lack of 178 

high-quality wave data for model validation, which is an important step in assessing the 179 

accuracy of model performance and increasing the confidence in model applications. In 180 

particular, to evaluate the model performance in simulating wave energy growth, 181 

dissipation in swell and wind-sea climate, observed spectral wave data with long-term 182 

records, and reasonable spatial coverage for the model domain are needed. However, 183 

few long-term measurement stations exist in the Salish Sea. A total of five buoys are in 184 

the UnSWAN domain, as shown in FIG. 1. The water depth and operation details are 185 

http://polar.ncep.noaa.gov/waves/implementations.php
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provided in TABLE 1. The National Data Buoy Center (NDBC) operates three wave 186 

buoys, 46041 on the Pacific coast of Washington State, 46087 near the entrance of the 187 

SJDF, and 46088 in the eastern SJDF, while the Department of Fisheries and Oceans 188 

(DFO) Canada operates two buoys in the SoG. However, wave direction data are not 189 

available at the DFO buoys. Further QA/QC analysis indicated that the quality of the wave 190 

period data at DFO buoys is also very poor. Therefore, wave period and direction data at 191 

the DFO buoys were not used in the model validation. These buoys are located in water 192 

depths ranging from 14 to 261 m, covering a wide range of conditions from deep to 193 

shallow waters, and thus giving a representative sample of model performance. No 194 

measurements are taken in the Puget Sound. Although these buoys do not provide 195 

comprehensive spatial coverage, they can be used to validate and calibrate wave models, 196 

which can be used to explore the wave characteristics in the entire Salish Sea. 197 

TABLE 1. Ground truth stations inside the Salish Sea. 198 

Buoy ID Coordinates Depth (m) Agency Operation 

46041 47°21’10” N, 124°44’30” W 128 NOAA Since 06/1987 

46087 48°29’35” N, 124°43’35” W 261 NOAA Since 07/2004 

46088 48°20’01” N, 123°09’53” W 114 NOAA Since 09/2004 

46131 49°54’36” N, 124°59’24” W 14 DFO Since 10/1992 

46146 49°20’24” N, 123°43’48” W 42 DFO Since 03/1992 

 199 
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2.4 Wind Forcing 200 

Given the complex geometry of the Salish Sea and its relative sheltering from the 201 

open coast, especially in Puget Sound, high-quality wind forcing is particularly important 202 

for accurately simulating wave climate in the Salish Sea. In this study, Climate Forecast 203 

System Reanalysis (CFSR) (Saha et al., 2010) was used to drive the three-level global-204 

regional WW3 model. CFSR provides hourly wind field, among many other meteorological 205 

variables, at 30-arc-minute (~35 km in the zonal direction at 50° N latitude) grid resolution 206 

with global coverage from 1979 to the present. CFSR wind has also been widely used in 207 

wave hindcasts at global scales and in many open coastal regions around the world 208 

(Akpinar et al., 2016; Campos et al., 2018; Campos and Soares, 2016; Lavidas et al., 209 

2017; Morim et al., 2016; Stopa and Cheung, 2014; Yang et al., 2018).  210 

However, at 30-arc-minute resolution, CFSR provides a limited number of data 211 

points in the Salish Sea. In particular, there are no CFSR data points in Puget Sound and 212 

only a few points in the SJDF and SoG (FIG 2a). Clearly, the grid resolution of CFSR is 213 

insufficient to provide accurate surface wind forcing to drive wave hindcasting in the 214 

Salish Sea. Therefore, a higher-resolution wind product is needed. A regional climate 215 

simulation using the Weather Research and Forecasting (WRF) model (Skamarock et al., 216 

2008) was performed by the Pacific Northwest National Laboratory over the western U.S. 217 

at a grid spacing of 6 km (Gao et al., 2017). The WRF-PNNL simulation was driven by 218 

large-scale boundary conditions from the North American Regional Reanalysis (Mesinger 219 

et al., 2006) for the period of 1980–2015. More details about the WRF-PNNL simulation, 220 

including the choice of physics parameterizations, which follow Gao et al. (2017), and 221 

comparison of observed and simulated precipitation are provided by Chen et al. (2018). 222 
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Surface variables such as 10 m winds, 2 m surface air temperature, and precipitation are 223 

archived at hourly intervals. The distribution of the WRF-PNNL grid points in the Salish 224 

Sea basin is also shown in FIG 2a. Compared to the CFSR grid resolution, the WRF-225 

PNNL model has much higher resolution and provides better coverage in the Salish Sea. 226 

Scatter plots of CFSR and WRF-PNNL simulated winds and observed data at buoy 227 

stations 46131, 46146, and 46088 in the Salish Sea are presented in FIG 2b-g. Compared 228 

to the CFSR simulation of winds, the WRF-PNNL simulation captured more 229 

spatiotemporal variability of winds because it was run at a higher spatial and temporal 230 

resolution, which is important for simulating winds in the orographically complex region of 231 

the Salish Sea. CFSR significantly underpredicted sea-surface wind at all three buoy 232 

stations, while the WRF-PNNL model results showed reasonable agreement with 233 

observed data. 234 
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 235 

FIG 2. (a) Comparison of the grid resolution of the CFSR and WRF-PNNL models. (b-g) 236 

Model-data comparison for wind speed at buoy locations.  237 

To further assess the influence of wind forcing on wave hindcasting in the Salish 238 

Sea, a sensitivity model run for year 2015 was conducted using WRF-PNNL and CFSR 239 

simulated winds. Model performance for simulating significant wave height (Hs) with two 240 

different wind-forcing products was compared among buoy stations 46131, 46146, and 241 

46088, as shown in the scatter plots (FIG. 3a-c). Clearly, simulated significant wave 242 

height is much better in all three stations in the Salish Sea when forced by the WRF-243 

PNNL winds compared to those forced by CFSR. In general, the waves are significantly 244 

underestimated when the model is forced by CFSR, as could have been expected from 245 

the comparison of wind speeds at these buoys (FIG 2). A set of error statistic metrics, 246 
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including the root-mean-square-error (RMSE), the percent error (PE), the scatter index (SI), 247 

the bias, and the linear correlation coefficient (R), were calculated to quantify the model’s 248 

performance. The formulations of these error statistical parameters are provided in 249 

Appendix A. As indicated in TABLE 2, all error statistical parameters for simulated 250 

significant wave height forced by WRF-PNNL wind were better than those forced by 251 

CFSR wind. The simulated significant wave height using the WRF-PNNL wind forcing is 252 

improved in the Salish Sea, resulting in a decrease in the bias in absolute terms. 253 

 254 

FIG. 3. Comparisons of simulated and observed Hs when forced by WRF and CFSR for 255 

year 2015. 256 

Local wind-wave generation was also evaluated by computing the percent of time 257 

during 2015 that the waves were above a specific threshold of significant wave height, 258 

such as 10 cm. At buoy 46088 in the SJDF, waves above this threshold were 89%, 89%, 259 

and 42% of the time based respectively on observed data, SWAN-WRF-PNNL and 260 

SWAN-CFSR results. As shown in FIG. 3, most of the time the SWAN-CFSR combination 261 

significantly under-predicts the wave heights. In the SoG, the model behavior is similar; 262 
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for buoy 46146, 86%, 74%, and 17% of the time the waves exceed the threshold, while 263 

for buoy 46131, the threshold is exceeded 40%, 44%, and 11% of the time. Consistent 264 

results were found when different threshold values were used—from 5 cm to 30 cm in 5 265 

cm increments. The threshold exceedance analysis suggests that the time periods during 266 

which waves are generated in the Salish Sea are well captured by the SWAN model 267 

forced by WRF-PNNL wind. However, at least half of the time periods are missed when 268 

the wave model is forced by CFSR wind. Therefore, based on the assessment of wave 269 

model performance in simulating significant wave height using both CFSR and WRF-270 

PNNL wind products, WRF-PNNL wind is adequate to drive the basin-scale wave model 271 

to simulate swell and wind-sea climate in the Salish Sea. 272 

TABLE 2. UnSWAN model performance for simulating Hs when forced by CFSR 273 

and WRF-PNNL winds. Statistics are based on results for 2015. 274 

Parameter Buoy Wind Model RMSE PE (%) SI Bias R 

Hs (m) 

46088 

WRF-PNNL 0.33 64.5 0.93 0.14 0.69 

CFSR 0.33 -51.1 0.92 -0.22 0.53 

46131 

WRF-PNNL 0.23 9.0 0.74 -0.01 0.89 

CFSR 0.52 -91.7 1.68 -0.27 0.80 

46146 

WRF-PNNL 0.24 16.8 0.63 0 0.73 

CFSR 0.40 -89.9 1.05 -0.32 0.68 

 275 
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3 Results and Discussion 276 

3.1 Model Validation 277 

To validate the model, the model simulation period should be selected based on 278 

the availability of wave buoy data and wind forcing. Although the two DFO buoys (46131 279 

and 46146) have data records back to 1992, the two NDBC buoys (46087 and 46088) in 280 

the SJDF did not start full-year measurements until 2005, as shown in TABLE 1. The 281 

WRF-PNNL simulations end in 2015. Therefore, the number of years with full-year data 282 

records and wind forcing are 11 years, from 2005 to 2015. In balancing with the 283 

computational cost and the period of high-resolution wave hindcast, a 5-year simulation 284 

period was determined, from 2011 to 2015. To confirm that a 5-year simulation is sufficient 285 

to characterize the overall wave climate in the Salish Sea, the significant wave height 286 

distribution, based on observed data at buoys 46087 and 46088 for the entire data record 287 

(2004–present) and the simulation period 2011–2015, was compared and analyzed (FIG. 288 

4a-b). The vast majority of the wave heights measured at both buoys were simulated in 289 

the present study, indicating 2011–2015 is a representative period for the mean 290 

climatology of the region. 291 

 292 
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FIG. 4. Probability density function of significant wave height for the full record (blue) 293 

and the modeled period (orange) at buoys 46087 (a) and 46088 (b). 294 

Model performance is assessed by comparing the hindcast results with 295 

measurements derived from buoys inside the model domain. For all the simulations, bulk 296 

wave parameters are stored at the top of the hour across the computational domain. 297 

Model results are interpolated to the time of the measurements to perform the 298 

comparisons. FIG. 5 shows the time-series comparisons of modeled and measured 299 

significant wave height at the five buoy locations for the second half of 2015. Overall, 300 

model results are in good agreement with the data, especially at the locations outside of 301 

the Salish Sea (FIG. 5a, b). The wave climate is well captured in the model, in terms of 302 

wave magnitude and variability at all locations. Waves are much larger along 303 

Washington’s Pacific Coast and at the SJDF entrance (FIG. 5a, b). However, waves 304 

decrease significantly and become more variable at shorter time scales as locations move 305 

inland (FIG. 5c-e). To better understand the spatial variation of wave height distribution 306 

in the Salish Sea, FIG. 6 shows a snapshot of significant wave height over the model 307 

domain during a storm event that brought 9 m waves to the entrance of the SJDF. The 308 

wave height is reduced drastically over the length of the SJDF from 9 m on the western 309 

side to about 2 m on the eastern side of the SJDF for a distance of about 150 km. In the 310 

SoG and Puget Sound, waves are mostly below 2 m and the small spatial variation in 311 

wave height is mainly subject to local wind action.  312 
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 313 

FIG. 5a-e. Comparison of simulated and observed Hs at all stations inside the model 314 

domain for the second half of 2015. Note: the vertical scale for c-e is smaller than a-b. 315 

Vertical black line indicates the conditions at 10:00 on 13 December 2018, shown spatially 316 

in FIG. 6.  317 
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 318 

FIG. 6. Spatial distribution of significant wave height during a storm event at 10:00 on 13 319 

December 2018. Buoy locations are shown as black and white dots for reference; they 320 

are identified in FIG. 5. 321 
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 322 

FIG. 7a-e. Comparisons of significant wave height at buoy locations on the Washington 323 

outer coast and in the Salish Sea. 324 

Model performance was also evaluated using a set of error statistics, which are 325 

defined in Appendix A. TABLE 3 shows that the model performance for open ocean 326 

stations is similar to other open ocean wave studies: SI ≈ 0.2 and R ≳ 0.9 (e.g., (García-327 

medina et al., 2014; Wu et al., 2018). The non-dimensional metrics show a reduction in 328 

model skill inside the Salish Sea, particularly at buoy 46088, where sea state is the most 329 

complicated because it is influenced by wind forcing from different directions. The 330 

reduction in model skill might also be partially due to poorer wind model performance, as 331 

shown in FIG 2f. In the eastern SJDF, UnSWAN tends to overestimate the waves, but the 332 
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model performance is within the range of previously published results (García-Medina et 333 

al., 2014; Guillou and Chapalain, 2015; Hanson et al., 2009; Yang et al., 2017). 334 

TABLE 3. Error statistics for UnSWAN model performance. Measurements of wave 335 

period from the DFO buoys are not realistic and are therefore not included in the model 336 

performance assessment. SI and PE are not reported for peak wave direction because 337 

division by the mean is not meaningful in this case. Negative and positive bias represent 338 

counterclockwise and clockwise model shifts, respectively. The absolute difference 339 

between the measurements and model results was kept under 180°. 340 

Parameter Buoy RMSE PE (%) SI Bias R 

Hs (m) 

46041 0.27 20.4 0.23 0.27 0.94 

46087 0.47 20.1 0.26 0.26 0.91 

46088 0.35 67.8 0.89 0.15 0.69 

46131 0.27 22.5 0.73 0.04 0.86 

46146 0.24 21.5 0.68 0.01 0.73 

Tm01 (s) 

46041 1.45 16.3 0.21 1.11 0.86 

46087 1.32 11.4 0.18 0.78 0.79 

46088 1.97 4.3 0.52 0.06 0.23 

Dp (°) 

46041 24.85 - - -6.29 0.67 

46087 23.65 - - 1.83 0.59 

46088 48.57 - - 3.49 0.72 

 341 
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3.2 Spatial Characteristics of Sea State  342 

To understand the general sea-state distribution in the Salish Sea, wave roses 343 

were generated using the 5-year model hindcast data at selected locations throughout 344 

the Salish Sea (FIG. 8). Wave roses show the frequency and relative height (percentiles) 345 

of waves coming from particular directions. The wave direction is defined as the incoming 346 

wave direction. The maximum significant wave height during the 5-year simulation period 347 

at each location is listed next to the wave rose in the figure. In the SJDF, stations were 348 

chosen at the midpoint between Vancouver Island and the north coast of the Olympic 349 

Peninsula starting at the location of buoy 46087 (SJDF1). At the entrance to the SJDF, 350 

the majority of the waves approach from the west and southwest, between 240° and 280°, 351 

and they have a maximum significant wave height of 8.67 m. The westward trend 352 

continues eastward in the SJDF, where a dramatic decrease in wave height occurs—353 

decreasing to a range of 3 to 4 m in the mid-SJDF (SJDF3 and SJDF4) and below 3.5 m 354 

at the eastern end of the SJDF and near the mouth of Puget Sound (SJDF5/PS1). Some 355 

local wave generation from the southeast direction is observed at SJDF5/PS1; it was 356 

generated along the northern portion of the main basin in Puget Sound. Overall, the sea 357 

state in the SJDF is dominated by waves generated offshore in the Pacific Ocean and 358 

propagated into the strait. 359 
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 360 

FIG. 8. Wave roses for selected locations during the analysis period of 2015. 361 

Sea state in the SoG is more complicated than in the SJDF because of the 362 

influence of local wind field and the complex coastal geometry. Although waves can 363 

approach from either the northwest or the southeast in the majority of the strait (e.g., 364 

SoG2, SoG3, and SoG4), waves at the south end (SoG1) and north end (SoG5) of the 365 
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SoG are mainly propagated from the northwest and the southeast, respectively, because 366 

of the blocking effect of land boundaries. The maximum significant wave height in the 367 

SoG increases gradually from 2.68 m at SoG1 in the south to 4.08 m at SoG5 in the north. 368 

Interestingly, at SoG4 the larger waves approach from the southwest, similar to SoG3, 369 

even though the points are at opposite ends of Lasqueti Island. In the northern part of the 370 

SoG, dominant wave direction is from the southeast; while in the southern part of the 371 

SoG, large waves are generated by local wind forcing from the northwest.  372 

Of the three main basins in the Salish Sea, the Puget Sound has the smallest 373 

waves. Wave magnitude in the Puget Sound shows a decreasing trend from the mouth 374 

(PS1) to the south end of the Sound (PS7). In the main channel at PS4, the majority of 375 

the waves approach from the northwest. However, the larger waves are those that 376 

approach from the south even though waves from that direction are prevalent only 33% 377 

of the time. The wave climate in the south Puget Sound is similar to that in the main 378 

channel. However, the waves in the south Puget Sound are generally smaller; the 379 

maximum significant wave height is 1.68 m at PS7 compared to 2.34 m at PS4 in the 380 

main channel. 381 

Joint probability distributions of significant wave height and peak wave period show 382 

that at the entrance to the SJDF the majority of the waves have peak periods of over 10 s 383 

(FIG. 9a). However, in the eastern portion of the SJDF and at the entrance to Puget Sound 384 

(FIG. 9b, c), the wave energy at these bands (period >10 s) is dissipated quickly, and 385 

strong energy growth with a wave period of less than 5 s is evident. In the main basin of 386 

Puget Sound (FIG. 9e), most of the waves have peak periods much less than 5 s. 387 

Interestingly, some long period energy makes it into the Puget Sound, but the significant 388 
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wave heights of these longer waves (above 10 s) are very small (FIG. 9d). The peak wave 389 

period was never above 10 s for SoG1 in the southern SoG, indicating that long waves 390 

entering the SJDF are not dominant at SoG1. 391 

 392 

FIG. 9. Wave height and period distribution from the SJDF entrance to the Admiralty 393 

Inlet and south SoG. Note that the range of the abscissa is different for all subplots in 394 

order to show the wave height details. All joint probability distributions are normalized so 395 

that the total integral equals unity. 396 

To analyze the wave climate, spectral partition output is obtained for year 2015 397 

using the watershed algorithm of Hanson and Phillips (2001) as implemented in SWAN. 398 

To evaluate the sea states, the percentage of each partition that is forced by the wind is 399 

obtained. In this analysis, the partition is categorized as a wind-sea condition if at least 400 

30% of the partition is forced by wind; otherwise, it is classified as swell. Additionally, if 401 
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the significant wave height does not exceed 10 cm, the partition is not considered. No 402 

wave period cutoff is imposed for swell, so in this context swell does not necessarily mean 403 

long period waves. The percents of occurrences of pure wind, pure swell, and combined 404 

sea states at selected locations corresponding to FIG. 8 are presented in TABLE 4. As 405 

shown in TABLE 4, nearly 89% of waves at the entrance of the SJDF are swell and 11% 406 

are combined wind-sea and swell. There is basically no contribution from pure wind-sea 407 

at SJDF1. In the east end of the SJDF and the mouth of Puget Sound, although pure 408 

swell is still dominant, the contribution of wind-driven waves increases, with approximately 409 

15% being derived from pure windsea. Inside Puget Sound (PS4), sea state is dominated 410 

by locally wind-driven waves, at 82%, and only about 16% is contributed by pure swell. 411 

TABLE 4. Percent occurrence of pure wind, pure swell, and combined sea states 412 

at selected locations. N is the number of events that exceeded the 10 cm significant wave 413 

height threshold. The location of these stations is shown in FIG. 8. The last column shows 414 

the percent of time the peak wave period is above 10 s. 415 

Station N Wind Swell Combined %Tp>=10s 

SJDF1 8760 0.72 88.33 10.95 74.8 

SJDF4 8634 14.55 49.10 36.35 40.4 

SJDF5/PS1 6991 15.98 60.86 23.16 25.6 

PS2 5735 31.40 57.96 10.64 16.3 

PS4 1859 82.19 16.35 1.45 0 

SoG1 4478 56.32 36.27 7.41 0 

 416 
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3.3 Seasonal Characteristics 417 

Wave climate in the PNW experiences strong seasonality, typically characterized 418 

by a very calm sea in the summer months and large waves induced by windstorms in the 419 

winter months. However, the seasonality of the wave climate in the Salish Sea could be 420 

more complicated because of the influence of local wind effects and complex coastlines. 421 

This section describes the seasonal characteristics of wave climate in each of the three 422 

main basins in the Salish Sea separately. 423 

To investigate the seasonality of wave climate in the Salish Sea, monthly averaged 424 

as well as 90th percentile significant wave heights at selected stations along the SJDF 425 

were analyzed based on the 5-year hindcast results (FIG. 10). The shaded band indicates 426 

the standard deviation. At the entrance to the SJDF (FIG. 10a), large waves are observed 427 

in the winter months; the 90th percentile wave height is over 4 m in December. The lowest 428 

wave height occurs in August when the 90th percentile wave height is just below 2 m. As 429 

waves propagate into the SJDF, wave heights drop dramatically (FIG. 10b), even just a 430 

short distance from the entrance (20 km between SJDF1 and SJDF2). Significant wave 431 

heights continue to decrease as waves propagate farther into the inland side of the SJDF 432 

(FIG. 10c-e). A distinct feature of wave climate in the eastern SJDF is that there are very 433 

little seasonal variations; the mean significant wave height is approximately 0.5 m 434 

throughout the year at SJDF4 and SJDF5 (see FIG. 10d, e). To compare the seasonal 435 

variations at different stations in the SJDF, distributions of normalized monthly averaged 436 

significant wave heights at all stations are plotted in FIG. 10f. The color codes of the 437 

stations are shown in FIG. 10g. Clearly, in the western SJDF (stations SJDF1 and 438 

SJDF2), the maximum and minimum wave heights occur in December and July, 439 
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respectively. In contrast, maximum wave heights in the eastern SJDF (stations SJDF4 440 

and SJDF5) occur in July. In the middle of the SJDF (SJDF3), transition of seasonality is 441 

observed—the peak wave height occurs in July, but the maximum wave height still occurs 442 

in December. 443 

 444 

FIG. 10. (a-e) Monthly averaged significant wave height along the SJDF for selected 445 

stations. (f) Monthly averaged significant wave height normalized by the largest monthly 446 

wave height value for each station. (g) Station map. SJDF1 coincides with the location 447 

of buoy 46087. 448 
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In the SoG, the seasonality of wave climate shows a trend somewhat similar to the 449 

SJDF, except in a reverse direction (FIG. 11). In the southern SoG (FIG. 11a,b), although 450 

the maximum wave heights occur in December, a two-peak pattern in the summer and 451 

the winter is observed, similar to the wave climate in the eastern SJDF. Moving from the 452 

south to the north end of the SoG (FIG. 11c-e), waves become larger in the winter 453 

(December), and smaller in the summer, especially in July when the minimum wave 454 

height is reached at SoG5. The seasonal variations of wave climate at different stations 455 

in the SoG are more clearly shown in FIG. 11 by the normalized monthly wave heights. 456 

 457 
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FIG. 11. (a-e) Monthly averaged significant wave height along the SoG for selected 458 

stations. (f) Monthly averaged significant wave height normalized by the largest monthly 459 

wave height value for each station. (g) Station map. Station SoG1 coincides with the 460 

location of buoy 46146. 461 

The wave climate in Puget Sound is the mildest in the Salish Sea. Monthly 462 

averaged wave heights are well below 1 m in the entire Puget Sound, approximately 0.5 463 

m near the entrance of the Sound (PS1 and 2), and below 0.25 m in the rest of the 464 

locations (PS3–PS8), especially in the south Puget Sound where wave height is close to 465 

zero throughout the year (FIG. 12). Unlike the SJDF and SoG, wave climate in Puget 466 

Sound shows very little seasonality, likely due to the limited fetch for full wave growth in 467 

any of the sub-basins in Puget Sound. No distinct seasonal patterns in wave climate are 468 

found inside Puget Sound. Although normalized monthly averaged wave heights indicate 469 

that the maximum and the minimum wave heights in the south Puget Sound (PS8) occur 470 

in the winter and the summer, such a seasonality is insignificant because waves are 471 

extremely small (FIG. 12h). 472 
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 473 

FIG. 12. (a-i) Monthly averaged significant wave height along the main basin of Puget 474 

Sound for selected stations. (j) Station map. PS1 and SJDF5 are the same station.  475 
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4 Conclusions 476 

A high-resolution UnSWAN wave model was developed to simulate wave climate 477 

in the Salish Sea. The Salish Sea wave model was driven by wave spectral output from 478 

a three-level nested WW3 model and wind forcing from a high-resolution regional WRF 479 

hindcast. Wind sensitivity analysis indicates that while the 0.5o resolution CFSR wind is 480 

sufficient for driving wave hindcasting in the open ocean, high-resolution and accurate 481 

wind forcing is necessary to drive the Salish Sea wave model due to the complexity of the 482 

model domain. This study demonstrates that the high-resolution wind field obtained from 483 

the 6 km resolution WRF hindcast can significantly improve wave hindcast accuracy in 484 

the Salish Sea. Satisfactory model validation at four wave buoys demonstrates that the 485 

wave model is able to accurately simulate the wave climate in the Salish Sea. Sea states 486 

in three main basins of the Salish Sea were analyzed based on 5-year wave hindcast 487 

results.  488 

Waves in the SJDF are dominated by swells with a peak period of over 10 s, which 489 

are generated remotely in the Pacific Ocean and propagated into the strait. Once they 490 

enter the SJDF, swells dissipate significantly from the west to the east side of the strait. 491 

Different from waves in the SJDF, waves in the SoG and Puget Sound are dominated by 492 

local wind fields in the direction oriented to the main channel. In particular, waves in Puget 493 

Sound are small and primarily contributed by wind-sea; peak periods are generally less 494 

than 5 s and maximum significant wave heights are less than 2.0 m. The seasonality of 495 

wave climate can be very different depending on the locations evaluated in the Salish 496 

Sea. In the western SJDF, which is strongly influenced by swells propagated from the 497 

Pacific Ocean, waves are the largest in the winter and smallest in the summer. However, 498 
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in the eastern SJDF and the southern SoG, wave climates show a two-peak seasonal 499 

feature—maximum wave heights occur either in the summer or winter.  500 

The 5-year high-resolution wave hindcast conducted in this study provides first of 501 

their kind wave climate data for the Salish Sea. These data will be useful in better 502 

understanding the role of wave climate in coastal processes in the Salish Sea, such as 503 

sea-surface mixing, wave energy assessment, wave-current interaction, and nearshore 504 

sediment transport. The comprehensive wave data set is also important in assessing the 505 

coastal hazards related to sea level rise and extreme wave actions in the Salish Sea.  506 

  507 
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 521 

APPENDIX A: Model Performance Metrics 522 

To quantitatively evaluate the model performance in simulating the wave climate, 523 

five statistics were computed to compare model results with measurements. The root-524 

mean-square-error (RMSE) is defined as: 525 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑖 −𝑀𝑖)2
𝑁
𝑖=1

𝑁
 526 
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where N is the number of observations, Mi is the measured value, and Pi is the model 527 

generated value.  528 

The percent error (PE) is defined as: 529 

𝑃𝐸 =
100

𝑁
∑

𝑃𝑖 −𝑀𝑖

𝑀𝑖

𝑁

𝑖=1

 530 

The scatter index (SI) is the RMSE normalized by the average measurement: 531 

𝑆𝐼 =
𝑅𝑀𝑆𝐸

𝑀
 532 

The scatter index helps put the RMSE values into context when comparing regions 533 

of large wave heights with regions of small wave heights.  534 

The bias is defined as: 535 

𝐵𝑖𝑎𝑠 =
∑ 𝑃𝑖 −𝑀𝑖
𝑁
𝑖=1

𝑁
 536 

Finally, the linear correlation coefficient (R) is a measure of the linear relationship 537 

between the predictions and the measurements from 0 to 1, where 1 is a perfect fit: 538 

𝑅 =
∑ (𝑃𝑖 − 𝑃)

2𝑁
𝑖=1 (𝑀𝑖 −𝑀)

2

√(∑ (𝑀𝑖 −𝑀)
2

𝑁
𝑖=1 ) (∑ (𝑃𝑖 − 𝑃)

2
𝑁
𝑖=1 )

 539 

  540 
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